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Abstract. A Heisenberg model is employed to study the spin fluctuation dynamics on a (001) ferromagnetic
surface using a new theoretical formalism. The solution of the full magnetic problem arising from the
absence of magnetic translation symmetry in one dimension due to the presence of a magnetic surface
is presented. The calculations are described using simultaneously a closed form of the spin-wave Green’s
function and the matching procedure in the random-phase approximation. Analytic expressions for the
Green’s functions are also derived in a low-temperature spin-wave approximation. The theoretical approach
determines the bulk and evanescent spin fluctuation fields in the two dimensional plane normal to the
surface. The results are used to calculate the localised modes of magnons associated with the surface.
Numerical examples of the modes are given and they are found to exhibit various effects due to the
interplay between the bulk and surface modes. It is shown that there may be surface spin-waves that decay
in amplitude with distance into the bulk domain. Also the bulk spin fluctuations field as well as the magnons
localised at the surface depend on the nature of the bulk-surface coupling exchange. The unstable surface
magnetic configurations are illustrated and discussed. The results derived from the dynamic correlation
functions between a pair of spin operators at any two sites are employed to evaluate the spin deviation
in the ferromagnet due to localised surface modes obtained by the matching procedure as a function of
temperature.

PACS. 75.30.Et Exchange and superexchange interactions – 75.50.Dd Nonmetallic ferromagnetic materials
– 75.70.Ak Magnetic properties of monolayers and thin films – 76.70.Hb Optically detected magnetic
resonance (ODMR)

1 Introduction

Interest in magnetic surfaces from both experimental and
theoretical points of view has been motivated by the in-
creasing need to acquire knowledge of their associated
magnetic, electronic and mechanical properties for high
technology applications. The study of surface spin-waves
has proved to be very useful, in particular, for determin-
ing a magnetic anisotropy constant [1,2] using Brillouin
light scattering [3,4], that provides a tool to probe these
magnetic excitations, particularly in ultrathin layers and
also in dot-structured permalloy layers [5].

It is well known that localised surface as well as bulk
spin-wave modes, may occur in an ordered magnetic solid
when the magnetic system does not possess full symme-
try translation due to a surface or due to the presence of
surface imperfections or other lattice defects such as a sur-
face reconstruction and/or relaxation in the crystal [6–8].
These imperfections may indeed contribute to a number of

a e-mail: moktam@hotmail.com

physical effects such as changes in the thermal properties
and the short lifetimes of spin-waves deduced from their
observed large linewidths.

There are many reviews of the properties of surface
spin-wave in pure ferromagnets including their study by
experimental techniques such as light scattering and spin-
wave resonance [9,10]. A large number of magnetic excita-
tion investigations of ordered surfaces have been reported
in the literature with the aim of describing the magnetic
excitations in the case of semi-infinite ferro-and antiferro-
magnetic cubic systems. The theoretical study of the low-
lying magnetic excitations of ordered surfaces has been
treated extensively in the harmonic approximation with
short-range interactions, using alternatively the Green’s
functions in the context of the Heisenberg model [11–15],
the matching procedure [16] and the transfer matrix ap-
proach [17]. Various elegant formulations exist for obtain-
ing the relevant surface Green’s functions [18], which can
give information on magnetic properties at the crystal sur-
face, spectral densities, influence of surface anisotropy on
the magnetisation as well as thermodynamic stability of
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surfaces and the modes of their kinetic growth which are
also becoming important.

The matching method which was one of the calculation
procedures used with some success to describe vibrational
properties of surfaces and resonances [19], was applied to
study the surface spin-waves [20]. This approach makes
use of a secular equation of spin motion established for the
bulk of the semi-infinite magnetic system, which is shown
to contain all information concerning the travelling modes,
as well as evanescent modes, in the direction perpendicular
to the magnetic surface. The eigenvalue matrix is derived
from the Heisenberg Hamiltonian, and the energies of the
localised states for the surface magnons are obtained using
this method, which consists in matching the properties of
bulk magnons with evanescent spin-waves on the surface.
The existence, the nature and the shape of the solutions
are discussed in terms of surface exchange parameters.

Our motivation here is to present some calculations for
surface spin-waves using simultaneously the two theoret-
ical approaches based on the close packed Green’s func-
tions formalism and the matching procedure. We shall the-
oretically treat the spin-wave excitations in the simplest
case of ferromagnetic media magnetized in the z-direction.
The ferromagnetic surface layer is considered to be di-
rectly coupled by exchange interactions with the bulk.
The localised magnon states occurring at the surface are
described. We first obtain explicit Green functions for the
surface geometry. These results combined with the match-
ing technique formalism are then employed to calculate
the spin-wave states near the surface region.

To illustrate the method that will be employed, we
start our study by introducing the total energy includ-
ing only the first nearest neighbour exchange interactions,
magnetic anisotropy and external fields. To do this, the
first stage consists of determining, in part, the close packed
Green’s functions in order to obtain the Bloch equations of
spin motions. Secondly, the set of propagating magnetic
modes are required, that describe in turn the magnetic
propagating bulk spin fluctuations field on the two di-
mensional (2D) bulk square lattice parallel to the surface
structure. This field is independent of the type of surface
structure considered, depending only on the nature of the
magnetic exchange interactions proposed between its sites.
The second stage aims at matching the dynamics of the
surface domain to the evanescent bulk spin fluctuations
field obtained by means of a Green’s function formalism
and the matching procedure [21] on the same 2D square
lattice as mentioned above. The procedure developed in
this paper allows a study of the bulk spin fluctuations field
as well as the magnons localised at the surface depending
on the nature of the bulk-surface coupling exchange. This
generalisation to two dimensions permits the calculation
of the magnetic excitation energies that are travelling from
the surface to the bulk region.

The outline of this paper is as follows: the theoreti-
cal aspects for the bulk magnetic excitations as well as
the geometrical model are presented in Section 2. In Sec-
tion 3, the spin fluctuation dynamics using Green’s func-
tions method are presented for the bulk and surface re-

Fig. 1. The geometry considered in the model showing the
bulk and surface exchange parameters. The layer number par-
allel to the surface is indexed by n (along the z-axis). The z
axis is normal to the surface boundary, whereas the x and y
axis are parallel to the surface layer.

gions, with a view to determining unique solutions for the
set of propagating modes on a 2D square lattice parallel to
the surface. Then, the Green’s functions and the match-
ing procedure technique are simultaneously applied to de-
scribe the bulk spin fluctuation dynamics as well as the
localised modes of magnons near the surface in Section 4.
A simple cubic ferromagnetic structure is assumed, but
the results may be generalised to other lattice structures.
Section 5 is devoted to determine the dynamic response
of the system in order to evaluate static thermodynamic
properties. For this purpose, the calculations of the mag-
netisation deviation due to the surface localised modes
obtained from the matching procedure in different layers
is described. Numerical applications of the theory and dis-
cussion are given in Section 6, whereas the conclusions are
summarised in Section 7.

2 Bulk magnetic excitations

The qualitative features of surface spin-waves can be easily
illustrated by a (001) face of a simple cubic ferromagnet
structure. The crystal is assumed to be infinite in the x
and y directions and extends from z = 0 to z = ∞. The
co-ordinates system for the (001) surface is illustrated in
Figure 1. The z-axis is chosen to be inwardly normal to
the surface plane. Layers parallel to the surface are num-
bered in ascending order, with the surface as the first layer.
The integer n is used to label the layers along the z-axis
as indicated in Figure 1. Only the nearest neighbours ex-
change interactions are considered between the spins in
the model assuming that this is sufficient to depict the
ground state energy in a Heisenberg Hamiltonian, since
these interactions are related to the rapidly decaying elec-
tronic wave-function overlap integrals between crystallo-
graphic sites. To illustrate this approach, we use the effec-
tive spin Heisenberg Hamiltonian including the external
and anisotropy magnetic fields to describe the above sys-
tem. This leads to:

H = −
∑
r �=r′

J(r, r′)S(r)S(r′) − µHa(n)

∑
〈r〉

SZ(r), (1)
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µ = gµb is the gyromagnetic ratio for a magnetic atomic
site. S(r) is the local-spin operator located at the lattice
site r. J(r, r′) denotes the nearest exchange interaction be-
tween r and r′ sites and is zero except for coupling between
nearest-neighbour sites. Also, we allow for the possibility
that exchange interactions involving one or more sites in
the surface layer may differ from those in the bulk fer-
romagnet. Beyond the second layer, all exchange interac-
tions have a positive bulk value J . The first nearest neigh-
bours exchange interactions between spins on the surface
take the value Js, whereas J⊥ denotes the interactions be-
tween the first and second layers. Ha(n) = H0 + Ha

(n) are
effective fields experienced by the magnetic atoms in the
ferromagnet, due to the externally applied field H0 and
to the effective single-ion anisotropy field Ha

(n) acting on
the nth layer. They are taken to lie along the easy di-
rection of magnetisation which itself is taken to be the
direction of the z-axis, perpendicular to the surface. The
values of Ha

(n) are considered as Ha
(1) on the surface layer

and Ha otherwise.
The energy modes of spin-waves E of the retarded

Green functions for a Heisenberg ferromagnet have been
evaluated using the random phase approximation (RPA).
Very briefly, the calculations make use of the general
Green’s function equation of motion:

EG(P : Q) = 1/2π〈[P, Q]〉 + G([P, H ]; Q), (2)

with H given by (1) and P and Q as the components of
the site spin operator.

The resultant series of closed simultaneous equations
connecting spin operators on any site in the ferromag-
netic crystal is solved using equations (1) and (2), to give
the bulk energy spectrum branches for the magnon mode
on the ferromagnet and the Green’s functions. Assuming
isotropic exchange, we find the energy mode to be:

Ek = µHa + 2J(r, r′)zσκ

〈
SZ

〉
(1 − γσκ

k ) , (3)

with γσκ
k = 1

zσκ

∑
〈σ,κ〉 exp[ik(rσ − rκ)]. The summation

(σ, κ) is over nearest neighbours only, and zσκ is the num-
ber of nearest neighbours sitting on [κ] sites to a magnetic
atom on an [σ] site. Ek denotes the pole of the Green func-
tions which can be calculated taking into account all the
nearest neighbours exchange interactions, the results are:

G
(
S+(r), S−(r′)

)
=

〈
SZ

〉
πN

∑
k

exp[ik(r − r′)]
E − Ek

· (4)

N is the number of magnetic unit cells containing one
spin each, 〈SZ〉 is the thermodynamic expectation values
of the z component of a single spin and may be calculated
by a molecular field model, which involves calculating the
surface magnetisation for a ferromagnetic system using
the self consistent molecular field equations [22].

The corresponding Green functions to those in equa-
tion (4) but with the spin operator occurring in the re-
verse order, are obtained using the property G(Q; P )E =
G(P ; Q)−E . Explicitly, for the reverse order of operators,

we obtain also

G
(
S−(r), S+(r′)

)
= −

〈
SZ

〉
πN

∑
k

exp[−ik(r − r′)]
E + Ek

· (5)

We can show that the Green function results reduce to
those obtained at absolute zero by Keffer for the ferromag-
net [23]. Keffer employs the Holstein-Primakoff transfor-
mations to diagonalize a spin Hamiltonian, like (1) here,
into a boson field of non-interacting magnons at T ≈ 0 K.
At this temperature the z component of spin acquires just
the maximum allowable spin value, namely spin quantum
numbers S, because the static susceptibilities do not con-
tribute. We can write, in this approximation 〈SZ(r)〉 = S.

To obtain dispersion relation for the spin-wave
modes of the semi-infinite system and furthermore,
transverse spin correlation functions of the form
〈S+(r, t), S−(r′, t′)〉, we evaluate the retarded Green’s
function 〈〈S+(r, t), S−(r′, t′)〉〉. In other words, it rep-
resents the Fourier components 〈〈S+(r), S−(r′)〉〉 at en-
ergy E satisfying the usual equation of motion as de-
scribed by equation (2). Explicitly, it may be expressed as

E
〈〈

S+(r); S−(r′)
〉〉

E
= 1/2π

〈[
S+(r), S−(r′)

]〉
+

〈〈[
S+(r), H

]
; S−(r′)

〉〉
E
· (6)

Using the property of translational invariance in the
(x, y) plane, we can introduce the Green’s functions and
their Fourier transformation into an energy E in the usual
way [24] as follows:

G(r, r′; t) = −i
〈
τS+(r, t), S−(r′, 0)

〉
=

∫
G(r, r′; E) exp(−iEt)dE. (7)

In a low temperature spin-wave approximation, and
considering the normalised energy for the propagating
magnetic excitation by putting E = (�w − gµbH0)/J , the
equation of motion can be linearized using the RPA pro-
cedure. Explicitly, the form taken is given by:

(E − gµHa)G(r, r′; E) = (Sn/π)δ(r − r′)

+
∑
r′′

J(r, r′′)Sn′′G(r, r′; E)

−
∑
r′′

J(r, r′′; E)SnG(r′′, r′; E). (8)

To give the full description of the bulk spin fluctuation
dynamics as well as the localised modes on the surface, we
need for simplicity, to introduce the following parameters
as ε

‖
ij = Js/J ; ε⊥ij = J⊥/J . We shall later discuss various

models for the values of ε
‖
ij and ε⊥ij . We can deduce from

equation (3), the functions γ
rr′(‖)
k and γ

rr′(⊥)
k which result

from the exponential factors when z‖ and z⊥ characterise
the number of nearest neighbours in the same layer and
the number in an adjacent layer, respectively. These may
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be expressed in the form:

γ
rr′(‖)
k = z−1

‖
∑

(same layer)

exp ik‖(r − r′)

= 1/2[cos(kxa) + cos(kya)],

γ
rr′(⊥)
k = z−1

⊥
∑

(adjacent layer)

exp ik‖(r − r′) = 1. (9)

Separating the time dependence of the S+
r (t) variable

given by equation (1) can be done by putting

S+(r, t) = S+(r)βre−iωt (10)

where β under βr is the spatial phase factor of a wave for a
propagating mode along the direction perpendicular to the
surface. Equation (8) may be recast in the characteristic
secular equation form

A0 + A1β + A2β
2 = 0 (11)

where the coefficients A0, A1 and A2 (with the property
A0 = A2) may be expressed as:

A0 = A2 = JS and A1 = E + 2JS(cos(kxa)
+ cos(kya)) − JSz − gµb (H0 + Ha) .

One can show that the phase factor doublet (βξ, β
−1
ζ )

both verify the polynomial, owing to the Hermitian nature
of the bulk dynamics or time reversal symmetry in mag-
netic lattices [25]. The energies of the bulk spin fluctuation
dynamics field are obtained using equation (11), when β
satisfies the propagating condition |β| = 1 which corre-
sponds effectively to propagating Bloch waves in the bulk
that are described by real wave-vectors. The projected
bulk band magnon structure onto the surface displays
bulk band and forbidden gaps characterised by |β| = 1
and |β| �= 1, respectively. For arbitrary values of β, how-
ever, equation (11) does not provide on its own the re-
quired unique solution for either of these generic spatial
phase factors. To obtain these as a function of E and k‖a,
one needs also to analyse the spin fluctuation dynamics for
the surface domain with the aim to satisfy the evanescent
condition β < 1 which shows that two physically accept-
able solutions for β from the roots of equation (11) exist
and may be retained.

In order to conclude this section, let us note that the
bulk Bloch-waves |E, k〉, with E and k being respectively
the energy and the three-dimensional (3D) wave-vector,
are expanded over a set {φσ(κ),α} of electronic wave-
functions where α designates the site inside the 3D unit-
cell. The wave-vector k is defined by its projections k‖
and kz onto the surface and perpendicular to it respec-
tively. The bulk domains are divided into regions, each of
them characterised by the number of pairs of Bloch waves
|E, k‖,±kz〉 having same (E, k‖). This then completes the
description of the non degenerate evanescent spin-wave
modes in the bulk domain, and permits the construction
of the evanescent field surrounding the surface region.

3 Surface spin fluctuation dynamics

To develop the matching procedure that will be employed,
it is necessary to identify three main domains considering
that this technique was given that name because its im-
plementation requires the model to be divided in regions
all having the same bidimensional (2D) periodicity along
the surface. (i) The bulk regions for a ferromagnet, having
3D periodicity where the bulk magnon dispersion curves
are first worked out. (ii) A surface region consisting of
an arbitrary number of adsorbate, reconstructed or re-
laxed layers. (iii) An intermediate region of bulk matter
corresponding to the ferromagnet, the thickness of which
increases with increasing range of inter-layer interactions,
and which is used to match the bulk spin fluctuations
field with the boundary conditions imposed by the sur-
face. These different regions are illustrated in Figure 1.

To apply the matching procedure in order to calculate
the localised modes of magnons at the surface, we need
to know the complete set of evanescent modes in the
bulk regions, in the normal direction to the surface plane.
These will be used to describe the displacement field
in the matching region near the surface as indicated in
Figure 1. Owing to the periodic character of the bulk
region, its displacement field can be reduced to one vector
per layer denoted by |Un〉 which represents the spin-wave
amplitude for the nth layer. To define this quantity, we
need to introduce the amplitude of the precessional spin-
waves using time and spatial two-dimensional Fourier
transform operators S+(r, t) given in equation (10). It
may be expressed, respectively, as

S+(r, t) =
∫ +∞

−∞
dw exp(iwt)S+(r, w), (12)

S+(r, w) = (2πa)−2

∫ +∞

−∞
dk‖ exp(ik‖ρ)Un(r)(k‖, w),

(13)

S+(r, t) denotes the well known spin-lowering operator
and may be expressed as S+(r, t) = SX(r, t) + iSY (r, t).
Now Un(r)(k‖, w) represents the spin-wave amplitude cor-
responding to n-sites layer located at r, and ρ represents
the two-dimensional position vector in x-y plane. We de-
note r = (ρ, na), where the integer n characterises the
atomic position in which that quantum spin value resides
at r and a measures the layer spacing.

The pure semi-infinite system has translational sym-
metry parallel to the surface, allowing us to introduce
the Fourier transform from r‖ = (x, y) to the projection
k‖ = (kx, ky) which is the two-dimensional propagation
vector parallel to the surface, thus

G(r, r′; E) = 1/η
∑
k‖

Mm,l(k‖, E) exp[ik‖(r‖ − r′‖)]. (14)

η is the number of sites in any one layer and Mm,l repre-
sents the infinite-dimensional matrix elements describing
the equations of motion for each nth layer. Then, after in-
serting equations (12) and (13) in equation (8) and using
equation (14), the above nth layer equation of motion can
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be rewritten in a matrix form as follows:

[M ]|Un〉 = |0〉, (15)

where |Un〉 is the vector column defined by |Un〉 =
[U1, U2, U3, . . . , Un, Un+1, . . . ]T . Explicitly, equation (15)
leads to the set of equations expressed in the follow-
ing form:

EU1 = −4ε
‖
ij

(
γ

rr′(‖)
k − 1

)
U1 − ε⊥ij

(
γ

rr′(⊥)
k U2 − U1

)

+
gµbH

a
(1)

JS
U1,

EU2 = −4
(
γ

rr′(‖)
k − 1

)
U2 − ε⊥ij

(
γ

rr′(⊥)
k U1 − U2

)

−
(
γ

rr′(⊥)
k U3 − U2

)
+

gµbH
a

JS
U2,

EUn = −4
(
γ

rr′(‖)
k − 1

)
Un −

(
γ

rr′(⊥)
k Un+1 − Un

)

−
(
γ

rr′(⊥)
k Un−1 − Un

)
+

gµbH
a

JS
Un (for n ≥ 3).

(16)

The complete set of the bulk and evanescent (ne + nb)
modes outside the surface region (n ≥ 2) can be expressed
using the translation operator properties [26,27], by the
following relations:

U b
n =

(ne+nb)∑
j=1

[β′(j)]n−3R+
j p′(βj), (17)

for a magnetic site in the bulk layers, and as

Us
n =

(ne+nb)∑
i=1

[β(i)]−(n−3)R−
i p(βi), (18)

for spin sites located at the surface and matching regions
(n ≤ 3). In this formalism, R+

j and R−
i depict basis unit

vectors spanning the space of the solutions corresponding
to the set {β(i), β′(j)} which allows a projection of the
evanescent field in the surface domain. The coefficient p(β)
identifies the relative weighting factors associated with the
different spin fluctuation variables. This theoretical repre-
sentation allows one to treat both the localised modes and
the vibrational properties for the model for that purpose
by generalising the framework of the matching method
from one to two dimensions. Let us mention that since
the phonon model [28], as well as the spin-wave model
presented here, share a common theoretical approach in
the harmonic approximation, it seems reasonable to sup-
pose that the calculations presented here are realistic and
predict surface localised spin-waves.

Knowledge of a complete set of evanescent modes in
the bulk region requires a description of the ferromagnetic
bulk spin fluctuations amplitude field |Un〉 in the matching
region using the mean-field approximation. The evanes-
cent precessional spin amplitude fields in the bulk region,
away from the surface region is described by the phase
factor doublet (βξ, β

−1
ζ ) with respect to ξ and ζ symbols

carried out over all travelling 3D (|βξ| = 1 and |β−1
ζ | = 1)

and exponential-like (|βξ|〈1 and |β−1
ζ |〉1) Bloch waves. In

other terms, we consider that an evanescent magnetic ex-
citation from the surface is characterised by a phase fac-
tor satisfying the requirement that |β| < 1 whereas the
propagating mode is described when |β| = 1. In practice
only the evanescent and propagating modes are retained
as physically applicable.

Using the above matching procedure in two dimen-
sions it is finally possible to express the equations for
the dynamics of the spin fluctuation variable near the
surface region, after inserting equations (17, 18) in the
homogeneous linear system of equation (16), and then
by extracting from equation (15) the sub-matrix corre-
sponding to the set of integers which satisfy the condition
n ≤ 3 corresponding to the labelling surface and matching
domains. This procedure allows the surface spin fluctu-
ations variables to be obtained in the form of a square
matrix M s(l, l′) acting on a column vector V such as
V = (U1, R

+, R−)T . This leads to the linear homogeneous
system ⌊

E2I − M s(υ, θ, {β})⌋ |V 〉 = |0〉. (19)

where I denotes the unit matrix and ϑ, θ = φ(E, ε
‖(⊥)
ij ,

γ
rr′(‖,⊥)
k (k‖, βξ), p(βi(j)), Ha), whereas M s(ϑ, θ, {β})

characterises the (3×3) mean dynamical matrix which de-
scribes magnons localised on the bulk and surface regions.
{β} is a set of ξ = 1, 2, . . . , (ne +nb) roots of the β-secular
equation (11), in the (E, k‖) space. A non trivial solution
of equation (19) requires that the determinant of this sys-
tem vanishes, which defines an algebraic equation in E,
whose real and positive solutions ES(k‖) yield the mean
surface magnon branches in the nb zones, and the surface
resonances in the regions where nb �= 0. Consequently, the
localised magnon states can be calculated also when the
determinant system given by equation (19) vanishes, so
det(M s) = 0. The non vanishing matrix elements M s are
given in the following form:

M s(1, 1) = E + 4ε
‖
ij

(
γ

rr′(‖)
k − 1

)
− ε⊥ij −

gµbH
a
(1)

JS
,

M s(1, 2) = M s(2, 1) = ε⊥ijγ
rr′(⊥)
k ,

M s(2, 2) = E + 4γ
rr′(‖)
k − 5 − ε⊥ij −

gµbH
a

JS
,

M s(2, 3) = γ
rr′(⊥)
k p(β1),

M s(3, 2) = γ
rr′(⊥)
k ,

M s(3, 3) =
[
E − 6 + 4γ

rr′(‖)
k − gµbH

a

JS

]
p(β1)β1

+ γ
rr′(⊥)
k p(β1)β1.

Since the matching method allows both acoustic and
optical localised surface spin-wave modes to be obtained,
we need in order to complete this study to calculate the
correlation functions between a pair of spin operators at
any two sites within a model for that purpose and to de-
duce the magnetisation deviation in each layer n due to
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these localised modes. Interest in calculating the correla-
tion functions has been motivated by the need to acquire
knowledge of the dynamic response of the magnetic sys-
tem using neutron scattering, light scattering or magnetic
resonance. Furthermore, they can be employed to deduce
static thermodynamic properties.

4 Correlation functions and layer
magnetisation

It is well known that at absolute zero temperature, all
of the quantities 〈SZ

n 〉 → S, where S denotes the mag-
nitude of the spin of the magnetic ion. At low temper-
atures, the variation of the expectation value 〈SZ〉, due
to thermal excitations of spin-waves, is small. Further-
more, 〈SZ

n 〉 is approximately uniform except near the sur-
face. The magnetisation deviation defined by the quantity
∆SZ

n = S−〈SZ
n 〉 is also twice as large for the surface spin

(n = 1), than for the bulk spins (n → ∞).
The transverse spin correlation function

〈S+(r, t)S−(r′, t′)〉 can be readily derived from
〈〈S+(r, t)S−(r′, t′)〉〉 using the fluctuation dissipa-
tion theorem. We define a Fourier transformation to k‖
and E variables by

〈
S+(r, t)S−(r′, t′)

〉
=

1
η

∑
k‖

exp(ik‖(r‖ − r′‖)

×
∫ +∞

−∞
exp(−iE(t − t′)Km,l(k‖, E)dE. (20)

The relation between the Fourier transformed spin
correlation function Km,l(k‖, E) and the retarded Green
function Mm,l(k‖, E), given in equation (14), may be ex-
pressed as:

Km,l(k‖, E) =
2

exp(−E/kBT )− 1
Im[Mm,l(k‖, E)], (21)

where T is the absolute temperature. This analysis en-
ables us to deduce the magnetisation deviation in each
layer n which may be expressed as ∆SZ

n = SZ
n − 〈SZ

n 〉.
Solving equation (14) to obtain analytic expressions for
the Green’s functions and equation (19) in order to deduce
the localised modes which will be considered as contribut-
ing to determine ∆SZ

n , we find the equal-time transverse
spin correlation functions is

∆SZ
n =

〈
S+(r, t)S−(r, t)

〉
k‖

= −2
η

∑
k‖

∫ +∞

−∞
dE[f(E) + 1]Im

[
M s

m,l(k‖, E)
]
,
(22)

where f(E) = [exp(E/kBT ) − 1]−1. By substituting for
M s

m,l(k‖, E) into the equation (22) we can deduce the re-
sults for ∆SZ

n numerically. Let us note that in this pro-
cedure and for T 	 Tc (Tc is the Curie temperature) as
well as for low enough temperatures, the thermal fluctu-
ations in the magnetisation are relatively small. For this
reason, we assume that the spin-wave interactions can be
neglected in the above calculations.

5 Numerical results and discussion

Here some numerical examples are presented to demon-
strate the essential features of the localised surface spin-
waves modes for an insulating ferromagnet with spin
value S = 3/2 and the influence of the surface-bulk ex-
change coupling. It is important to note that in the present
calculations, we neglect in our numerical results the exter-
nally applied field and both bulk and surface anisotropy
fields. Their eventual inclusion into the theoretical model
poses no difficulty at all from a mathematical point of
view and allows a treatment of any ferromagnetic model
for that purpose by taking into account the experimental
values.

The resolution of equations (11) and (19) leads to a
non linear expression in E and k‖. Its numerical solution,
in the form of a set of points E versus k‖, gives the bulk
spin fluctuation fields for A and B ferromagnetic medias
and the dispersion curves of magnetic excitations near the
surface, respectively. The only regions where |β| = 1 cor-
responds effectively to the propagating modes for bulk re-
gion as shown by the shaded area in all figures. Near the
surface region, the dispersion curves depict magnons prop-
agating along the direction normal to the surface that are
however effectively localised in the sense that their spin
fluctuation field is evanescent in the plane normal to the
surface. The amplitude of the localised spin-waves in the
surface region decays exponentially with increasing pene-
tration into the bulk layers.

To find the surface spin-wave dispersions, we must
solve equation (19) by considering det(M s) = 0. When
the solutions exist, they lead to a specific relation be-
tween E and k‖, E(k‖). The particular dependence of E
and k‖ depends upon the crystal surface and the values
of ε

‖
ij and ε⊥ij . A surface wave branch will become degen-

erate with the top or bottom of the bulk continuum, when
EB(kc

‖) = ES(kc
‖) = 0, where kc

‖ is the critical value of k‖.
Let us consider, firstly, the situation of the “free sur-

face” layer corresponding to Js = J⊥ = J (ε‖ij = 1 and
ε⊥ij = 1). This case characterises the absence of surface
perturbations. No surface wave branch exists for the sim-
ple cubic (001) surface, with nearest-neighbour exchange
interactions. When the exchange is greater at the surface,
as illustrated in Figure 2, an optical branch does not nec-
essarily occur. We note that when 1 < ε

‖
ij < 1.25, the solu-

tion obtained in the numerical calculations corresponds to
a wave whose energy occurs in the bulk continuum. It may
be attributed to a specific wave which grows with distance
from the surface satisfying the condition |β| > 1, and is
therefore physically not retained. In thin films, solutions
in this range are not necessarily forbidden. The require-
ment for an optical mode is ε

‖
ij ≥ 1.25. We note that an

optical mode cannot exist at k‖ = 0 for a (001) surface,
if ε⊥ij = 1, regardless of the value of J‖. For a given value

of ε
‖
ij > 1.25, the optical branch will be truncated at some

value of k‖ = kc
‖ (given by kcl

‖ ≈ 0.8, kc2
‖ ≈ 1.1, kc3

‖ ≈ 1.5)
corresponding to EB(kc

‖) = ES(kc
‖).
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Fig. 2. The figure depicts the bulk and surfaces dispersion

modes for ε⊥ij = 1 and for various values of ε
‖
ij . The plot is

given against k‖a for an in-plane propagating wave-vector k‖ =
(k‖, 0). The bulk spin-wave energies are shown shaded, whereas
the solid lines represent the surface modes. The energies are
given in kelvin units.

              

  

  

   

     

   

Fig. 3. The figure depicts the numerically calculated disper-

sion relations considering ε
‖
ij = 1 and for various values of ε⊥ij .

The plot is given against k‖a for an in-plane propagating wave-
vector k‖ = (k‖, 0). The bulk spin-wave energies are shown
shaded, whereas the solid lines represent the surface modes.
The energies are given in kelvin units.

The investigations of the behaviour of the ferromag-
netic system when considering the antiferromagnetic sur-
face exchange are illustrated in Figures 3 and 4 showing
the unstable magnetic configuration. In this representa-
tion, two simplified models have been used. The first is
based on the case when the surface exchange constant J⊥
is negative and Js = J . The second example of antiferro-
magnetic rearrangement occurs when Js is negative and
J⊥ = J .

   

Fig. 4. The energy of surface spin-waves plotted vs. |k‖a| for an
in-plane propagating wave-vector k‖ = (k‖, 0) for various val-

ues ε
‖
ij considering ε⊥ij = 1. The acoustic soft magnons modes

are illustrated characterising the unstable arrangements of sur-
face spin fluctuations.

Considering the case in which the constant Js takes
the same value as the positive bulk exchange interaction
J(ε‖ij = 1) and J⊥ is assumed to be negative (ε⊥ij < 0).
The numerical results are presented in Figure 3. In this
representation, we have ES(k‖) < EB(k‖). Solutions with
this property are acoustic surface spin-waves. As ε⊥ij → 0,
ES → 0 as k‖ → 0. For ε⊥ij = −0.1, the acoustic spin-
wave branch lies at the boundary of the bulk continuum.
For ε⊥ij > −0.1, no surface branch occurs. The quali-
tative features for ε⊥‖ < 0 can be seen from the cases
where ε⊥ij < −0.1. We then find a surface branch in some
regions (k‖ < k1

‖ and k‖ < k2
‖) with the values of Es

being negative (precession in opposite sense). As k‖ in-
creases, the surface wave becomes more localised at the
surface. At the zone edge (kx = ky = π/a), only the
surface layer has a non negligible amplitude. Figure 5a
illustrates the surface wave eigenvectors for ε

‖
ij = 1 and

ε⊥ij < 0 corresponding to an antiferromagnetically coupled
surface layer. Only the surface layer has a non negligible
amplitude. The phase of the spin fluctuation amplitude
components Un is constant, whereas the magnitude de-
creases with increasing penetration into the bulk. Let us
note that for the limit k‖ → 0 corresponds to the quantity
ES → 0. If ES = 0 for any k‖ �= 0, then the assumed
ferromagnetic spin arrangement is not the ground state of
the system. The unstable mode at k‖ = 0 has all surface
spins in phase. In such case, the new ground state must
be used to obtain meaningful solutions. It may be also de-
scribed by a ferromagnetic surface layer configuration, but
the spins acting on surface must be aligned antiparallel to
the second and subsequent layers.

In the opposite case, the dispersion relations corre-
sponding to ε

‖
ij < 0 and ε

‖
ij = 1 are illustrated in
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Fig. 5. (a) Surface wave eigenvectors for ε
‖
ij = 1 and ε⊥ij < 0

corresponding to an antiferromagnetically coupled surface
layer (ε⊥ij < 0). The ground state has a ferromagnetic surface
layer with spins aligned opposite to the remaining ferromag-
netic layers. (b) Surface waves for antiferromagnetic surface

exchange. The description of unstable mode for ε
‖
ij < 0 on sur-

face layer is illustrated and the new configuration of the surface
layer described by the new ground state is given.

Figure 4. The solutions obtained show the presence of
acoustic soft modes of magnons with negative slope which
occur for ε

‖
ij < −0.05. This characterises the unstable ar-

rangement of spin in surface layer. When ε
‖
ij = −0.1, the

corresponding localised spin-wave energy Es vanishes at
the edge of the two-dimensional zone for which kx = ky =
π/a. For these wave-vectors, the spins on a given layer are
180◦ out of phase with their nearest neighbours on the
same layer. Since the energy of this mode is zero, the ra-
dius of the precessional circle may grow arbitrarily large
with no expenditure of energy. Therefore the system is
unstable. The surface layer configuration is given in Fig-
ure 5b. For ε

‖
ij < −0.1, the assumed ferromagnetic ground

state does not correspond to that of the lowest energy
state. These features allows another ground state to be
defined, depicted by the surface spins with antiferromag-
netic configuration as shown in Figure 5b.

The primary objective of introducing the surface an-
tiferromagnetic interactions is to give the complete solu-

tions from the theoretical aspects developed in this paper,
in order to discuss the existence, the nature and the shape
of these solutions. Let us note that the same forms of the
dispersion curves, obtained within the theoretical formal-
ism used here, have been obtained in previous work [12].
If we consider that the exchange interactions in and near
the surface are antiferromagnetic in sign, then the possi-
bility of the magnetic analogue of surface reconstructions
arises. The spins in the surface region may order in an
antiferromagnetic manner, even though the bulk is ferro-
magnetic. The latter situation occurs in many well known
magnetic crystals, and the former may prove of interest
for an overlayer on a magnetic substrate, or if apprecia-
ble expansion occurs near the surface as previously de-
scribed [29]. Furthermore, it seems to be important to
discuss the properties of a model which exhibits this be-
haviour from a theoretical point of view. The properties of
the model may be examined and can constitute a means to
understand some aspects of observations of spin polarised
photoemission from the ferromagnetic surfaces.

Solving numerically equation (22) to obtain the poles
of the Green functions and equation (19) to deduce the
surface localised modes, we present in Figures 6a and b,
the salient numerical results of the magnetisation devi-
ations (∆SZ

n /S) due to the acoustic and optical surface
waves dispersion with the same parameters as in Figure 2
(ε‖ij = 0.8 and ε

‖
ij = 1.6), respectively. We emphasise that

the results presented here do not include the contribution
of the bulk modes, because we have summed only over
the poles corresponding to evanescent spin-wave modes for
which the spin fluctuation field is described by |β| < 1. On
the other hand, the case where only the surface layer has a
surface perturbation (ε‖ij > 0, ε

‖
ij = 1) is retained in these

calculations. For some values of temperature, we observe a
decreasing magnetisation deviation with increasing layer
number n. The evolution of ∆SZ

n /S as function of tem-
perature depict the presence of one peak located at n = 1
associated with the surface localised modes – one acoustic
(Fig. 6a) and one given by the optical mode (Fig. 6b).

The spatial variation in magnetisation deviation is
shown to produce an effect similar to a weakening of the
exchange constants at the surface. Thus, even the “free
surface” (J‖ = J⊥ = J) has surface perturbations in the
exchange interactions. As the temperature increases, the
effect of the surface on the spatial variation of the mag-
netisation becomes more important. The number of lay-
ers, whose magnetisation is substantially lower than that
of the bulk increases with increasing temperature. These
results confirm those obtained by Mills and Maradudin in
previous work [11].

In Figures 7 and 8, we present the solutions obtained
in the case of the presence of surface perturbations. A
variety of possible acoustic and optical surface branches
are presented for various values of ε

‖
ij > 0 and ε⊥ij > 0.

In Figure 7, the surface spin-wave dispersion curves show
that more than one surface branch can occur for given
values of ε

‖
ij and ε⊥ij . Two truncated optical branches oc-

cur corresponding to kc1
‖ ≈ 1.7 and kc2

‖ ≈ 2.3 which gives
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Fig. 6. (a)The magnetisation deviations [(S − 〈SZ
n 〉)/S] (with

arbitrary units) in layer n for various values of temperatures T .
(a) The figure depicts the intensity of the localised spin-waves
assuming the acoustic surface localised modes corresponding

to ε
‖
ij = 0.8 and ε⊥ij = 1 (as shown in Fig. 2). (b) The figure

depicts the intensity of the localised spin-waves assuming the

optical surface localised modes corresponding to ε
‖
ij = 1.6 and

ε⊥ij = 1 (see Fig. 2).

Es(kc1
‖ ) ≈ 128 K and Es(kc2

‖ ) ≈ 158 K, respectively. Fig-
ure 8 illustrates the localised surface magnon modes for
a large value of ε⊥ij = 2.5. For ε

‖
ij = 0.5 and ε⊥ij = 2.5,

both complete optical and acoustic branches occur. All
the complete optical branches become the origin of the
first Brillouin magnetic cell with Es(k‖ → 0) ≈ 85 K.

6 Conclusions

The main objective of this work is to demonstrate that it
is possible to use simultaneously the matching and Green’s
function formalism in order to calculate the surface spin-

Fig. 7. Bulk and surface dispersion modes for various values

of ε
‖
ij and ε⊥ij . The plot is given against k‖a for an in-plane

propagating wave-vector k‖ = (k‖, 0). The bulk spin-wave en-
ergies are shown shaded, whereas the solid lines represent the
surface modes. More than one surface branch can occur for
ε
‖
ij = 0.5 and ε⊥ij = 1.5.

Fig. 8. Bulk and surface dispersion modes for various values

of ε
‖
ij and ε⊥ij . The plot is given against k‖a for an in-plane

propagating wave-vector k‖ = (k‖, 0). The bulk spin-wave en-
ergies are shown shaded, whereas the solid lines represent the

surface modes. For ε
‖
ij = 0.5 and ε⊥ij = 2.5 a complete optical

and a complete acoustic branch occur.

waves modes and the localised modes near the surface
domain. In the first part we calculated analytically the
spin-spin Green functions in a ferromagnetic structure.
This gave results for the spin fluctuations field outside the
surface domain. Then, by matching the evanescent bulk
spin fluctuation dynamics with the surface modes, we give
the spectral intensity of the surface spin-waves, as well as
allowing us to recover the well-known surface spin-wave
dispersion relations. The surface mode spectral intensity
was studied as a function of depth from the surface and
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in-plane wave-vector for different values of the ratio of
surface to bulk exchange ε

‖
ij and ε⊥ij . It was shown that

it is possible for the surface to support both the acoustic
and optical modes. These modes depend on the nature
and the values of bulk-surface exchange coupling.

In addition, we have expressed the equal-time
transverse spin-spin Green functions in the form
〈〈S+(r), S−(r)〉〉 for low temperature T 	 Tc. Then, the
Green functions and matching method have been simulta-
neously used to describe the effects of surface spin-waves in
a semi-ferromagnet with the aim to evaluate the magneti-
sation factor ∆SZ

n due to the surface localised modes as a
function of the temperature and layer index n. There are a
number of further calculations which may be made using
the formalism developed here for the spin-spin Green func-
tions. In particular, the dynamic response of the system
due to light scattering or neutron scattering may readily
be investigated.

The general description of these spin-wave behaviours
has been illustrated by considering the presence or not
of the surface perturbations. The analytical approach de-
scribed for the present case of ferromagnetic insulators can
readily be generalized to other surface problems concern-
ing in particular the phonons, itinerant spins or electrons.
It can also give in a direct manner the spin fluctuation field
on the surface with the help of finite matrices. A straight-
forward generalization of the present calculations would
be to other crystal structures such as fcc and bcc with ap-
plications to materials such the EuO and EuS compounds
using Brillouin light scattering. These particular materi-
als are relatively strong light scatterers and are relatively
opaque, making them suitable for surface studies.

The frequencies of the localised modes described in
this work may provide information concerning the lo-
cal magnetic anisotropy and exchange interactions in the
neighbourhood of such a surface, and will contribute to
understanding more fully the role played in surface phe-
nomena such as surface instability, the growth of magnetic
substrates, and surface optical properties. We emphasize
that the present model is simple insofar that it considers
only magnetic exchange interactions between the ordered
spins, yielding hence the exchange dominated surface lo-
calised spin-waves. It is quite possible that other kinds
of magnetic interactions also play a role in the behaviour
and frequencies of the magnons localised at the surface
considering the reconstruction and/or relaxed layers, in
which case these interactions should be considered using
the equations of motion of the spin fluctuation field.

The author is very indebted to Dr J.M. Greneche (UMR
CNRS 6087 - Université du Maine (France)) for encourage-
ment, stimulating discussions and thanks the referees for useful
correspondences.
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